If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=24
We move all terms to the left:
2x^2+10x-(24)=0
a = 2; b = 10; c = -24;
Δ = b2-4ac
Δ = 102-4·2·(-24)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{73}}{2*2}=\frac{-10-2\sqrt{73}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{73}}{2*2}=\frac{-10+2\sqrt{73}}{4} $
| Y^3-3y+2=0 | | 4x-(3-x)=7(x-3)=10 | | -2(3s-5)-10=3(5s+1)-5 | | 7x+6x-2x=-39+72 | | 5x+2(11-4x(=82+x | | 20x-6(7x-10)=18x-3(8x-20) | | 4(3x-4)-11x=-9-3 | | 9^(x+1)+10.3^x+1=0 | | 6p=15p-83 | | 6^x=56 | | X+121=12x | | 2*x+12=3*(x-7) | | -21+z=8 | | P=6(3.14)*j | | 2*x+12=3(x-7) | | a3-3a2-11a+31=0 | | 7b^2=4b+24 | | 0.006^2+0.6^2=x^2 | | 7(8x+4)=3(4x+5)+233 | | 5(3x-6)-4x+7=10 | | 6.6=0.006x^2+0.6x | | 6(3x-6)=-126 | | H=0.006x^2+0.6x | | -1-(2)/(7)v=2 | | -1-2/7v=23 | | (-3/8)x=(12/27) | | 0=0.04x^2-8.504x+25302 | | w/2-9=4 | | 3x=-8x-44 | | 5x=94.3+3x | | 3x=3.5x+1 | | m=-7m+40 |